
 1

Layered Cellular Automata for Pseudorandom Number Generation

Syn Kiat Tan
1
 and Sheng-Uei Guan

2

1
Department of Electrical and Computer Engineering

National University of Singapore

10 Kent Ridge Crescent, Singapore 119260

2
School of Engineering and Design

Brunel University, UK

Abstract—The proposed Layered Cellular Automata (L-LCA), which comprises of a

main CA with L additional layers of memory registers, has simple local interconnections

and high operating speed. The time-varying L-LCA transformation at each clock can be

reduced to a single transformation in the set { | 1, 2, , 2 1}
f n

A f = −… formed by the

transformation matrix A of a maximum length Cellular Automata (CA), and the entire

transformation sequence for a single period can be obtained. The analysis for the period

characteristics of state sequences is simplified by analyzing representative transformation

sequences determined by the phase difference between the initial states for each layer.

The L-LCA model can be extended by adding more layers of memory or through the use

of a larger main CA based on widely available maximum length CA. Several L-LCA

(L=1,2,3,4) with 10- to 48-bit main CA are subjected to the DIEHARD test suite and

better results are obtained over other CA designs reported in the literature. The

experiments are repeated using the well-known nonlinear functions 30f and 45f in place

of the linear function 204f used in the L-LCA. Linear complexity is significantly

increased when 30f or 45f is used.

Index Terms— cellular automata, programmable cellular automata, pseudorandom

number generation.

 2

I. INTRODUCTION

andom numbers are needed in a variety of scientific, mathematical, engineering and

industrial applications including cryptography, built-in self test, artificial evolution such

as genetic algorithm and simulated annealing, Monte Carlo simulations, etc.

Mathematical measures are available to prevent wrong simulation results caused by using

inappropriate pseudorandom number generators (PRNGs). Statistical tests can be

conducted to ensure a PRNG produces numbers that are uniformly distributed,

uncorrelated, with long periods, etc. Still, finding a good PRNG is a difficult task [5,6] -

it is known that every PRNG has to fail in a certain simulation/statistical test, or in certain

setups that interfere with the particular regularities of a given PRNG and thus exhibits the

hidden correlations between numbers. Hence the PRNG must be carefully matched to the

problem at hand. In the past decade, Cellular Automata (CA) based PRNGs are studied

extensively [1,4,7-11] and found to be superior over traditional approaches in areas

ranging from built-in self-test [3,4], cryptography [2,12,14], etc.

The majority of research on CA based PRNG has been focused on the binary one-

dimensional (1-d) CA implemented using registers. Previously, researchers focused on

configuring the individual registers’ function in the CA such that the global evolution

operator will generate maximum length sequences [2,17]. Although having a long period,

these maximum length sequences are often found to be weak by randomness tests (see the

results in Section IV). It is desirable to have low-cost CA based PRNGs that can generate

sequences with desirable statistics. The DIEHARD test suite [15], comprising of 19

individual tests (detailed descriptions for these tests can be found in the given reference),

R

 3

is often used for evaluating the randomness quality of random number sequences

[4,7,9,10,11,21].

In Section II, we first explain the operations of a conventional CA and review some CA

based PRNG designs. Section III explains the operations of our new proposal – the

Layered CA (L-LCA) that uses time-varying transformations from a set derived from the

transformation matrix of a maximum length CA. The experimental setup and results

obtained are examined in Section IV. We conclude the paper in Section V.

II. BACKGROUND

A. Cellular Automata

A -bitn binary CA is an array of n registers. The CA state at time t is denoted

() () () ()
0 1 1[, ,...,]'t t t t

nS s s s −= where each register’s state () {0,1}t
js ∈ and 0 1j n≤ ≤ − . Fig. 1

shows a 4-bit CA. During each discrete time step, each register of the CA updates its state

using a pre-specified Boolean function f applied to the current states of each register’s

neighborhood, (1) () ()(, ,....)t t t
j a bs f s s

+ = . The conventional nearest-three-input neighborhood

(having a radius of one) consists of the register itself js and its left/right neighbors

1 1/j js s− + . When state updates are considered in terms of the entire CA, we have the

global evolution operator Φ such that (1) ()()t tS S+ = Φ .

 4

Fig. 1. A 4-bit cellular automata.

The 256 functions associated with the nearest-three-input neighborhood are usually

denoted by the naming convention in [1]. For example, three well-known linear functions

are listed below, where their associated function names can be calculated from their

outputs in Table I. Each output is taken as a positional power of 2, in lexicographic order

from top to bottom.

() () (1)
90 1 1: t t t

j j jf s XOR s s
+

− + → (1)

() () () (1)
150 1 1: t t t t

j j j jf s XOR s XOR s s
+

− + → (2)

() (1)
204 : t t

j jf s s
+→ (3)

Table I. Truth table for register functions

Input 1 1(, ,)j j js s s− + 90f 150f 204f

(1,1,1) 0 1 1

(1,1,0) 1 0 1

(1,0,1) 0 0 0

(1,0,0) 1 1 0

(0,1,1) 1 0 1

(0,1,0) 0 1 1

(0,0,1) 1 1 0

(0,0,0) 0 0 0

(0)
3s (0)

2s (0)
1s

'0 ' '0 '

(0)
0s

(1)
0s (1)

1s (1)
2s

(1)
3s

�

�

�

�

 5

We only consider CA with null boundary conditions (unless stated otherwise) where the

leftmost/rightmost registers receive a fixed "0" input from its “supposed” left/right

neighbors respectively. Details on boundary conditions can be found in [3]. A CA can be

uniform - the same function is used for each register; or hybrid – where each register can

use a different function. The example in Fig. 1 shows a 4-bit hybrid CA with the CA

transformation 150 90 150 90{ , , , }f f f fΦ = . The states of a CA during each discrete time step

can be successively sampled to form a pseudorandom n -bit sequence

(1) (2) (3){ , , , }S S S … or only one bit per clock is sampled from a particular register to form

the single-bit sequence (1) (2) (3){ , , , }j j js s s … .

B. Linear Maximum Length CA

Linear maximum length CA (m-CA) are -bitn CA which can generate sequences of all

possible non-zero states ()t
S having a period 2 1n − . These are hybrid CA configured

with 90 f and 150f (the example in Fig. 1 is an m-CA) and configurations have been

found for up to 500n = registers in [17]. Using only 90f and 150f , these m-CA have

very simple linear structure and low cost implementation associated with the nearest-

three-input neighborhood. A linear CA, as well as any linear finite state machine such as

linear feedback shift registers etc, can be represented by a so-called transformation matrix

A ; in other words the CA transformation Φ is equivalent to A . Each state is then given

by

() (0) , 0t t
S A S t= ⋅ ≥ (4)

 6

The transformation matrix A of an m-CA is always non-singular and has an inverse

()inv A A I⋅ = . It can be shown [3] that this inverse is 1mod(2 1) 2 2()
n n

inv A A A− − −= = and

therefore the m-CA produces sequences of period 2 1n − since

(2 1) 2 1 () () , for 0
n n

t t tS A S I S t+ − −= ⋅ = ⋅ ≥ .

As simulation results have shown (see Section IV), the sequences generated by m-CA do

not always pass all DIEHARD tests even when their period is above DIEHARD’s testing

requirement of 10M bytes of input, i.e. 2 1 10n
M− > , 23n > , thus these m-CA

configurations still have to be carefully tested for their statistical properties before using

them in applications. In short, long period is only one of the many considerations for a

PRNG.

C. Previous Works

We now provide the published results of some reported works that passed all DIEHARD

tests in the literature. In [21], the nearest-three-input neighborhood is expanded into a

non-local neighborhood scheme with four inputs. A 64-bit CA passing all DIEHARD

tests is then found through exhaustive testing. In [11], several 8-by-8 two-dimensional (2-

d) CA are shown to pass all DIEHARD tests where each register XOR at least four inputs

from surrounding registers to form the next state. A wide range of results is not available

from the authors although it is mentioned the 2-d CA must be at least 7-by-7 to ensure

satisfactory DIEHARD results. In [9], a 2-d array CA consisting of m arrays of n-bit 1-d

 7

CA is proposed. Only registers near the left/right boundary can be connected to other

boundary registers below or above it - complicated wiring that are usually present in

normal 2-d CA are thus avoided. Again using only linear functions, multi-objective

genetic algorithms are applied here to configure the inputs for registers near the

boundary. 48- and 50-bit versions of this 2-d array CA are shown to pass all DIEHARD

tests. Note that 2-d CA structures are actually equivalent to 1-d with an increased number

of inputs and neighborhood radius. These reported examples suggest that by having

register functions with increased inputs and/or over a non-local neighborhood, generated

sequences are likely to have improved randomness quality to pass all DIEHARD tests.

These represents the best results published from CA models using a fixed, time-invariant

CA transformation Φ such that (1) ()()t tS S+ = Φ .

Avoiding the weakness of m-CA and other CA using fixed time-invariant transformations

is an interesting direction to pursue. From (4), it is seen that each state ()tS is given as the

successive application of the same transformation Φ on the initial state (0)S . Each

successive state (1)tS + is always given by the same transformation Φ on its preceding

state ()tS . Linear regularities and structures are thus unavoidable in these sequences.

The Programmable CA [3] first suggested switching between 90f and 150f in a CA such

that the resulting configuration is always an m-CA. The required control signals are pre-

determined and stored on a ROM. The Controllable Control CA [7,8] also suggested

switching between 90f and 150f in a CA but the control signals are computed by an

 8

additional uniform CA with 30f . A separate set of signals to change the registers’

behavior is then supplied by another uniform CA with 105f . The authors only showed that

a 50-bit Controllable CA (equivalent to 150 registers in use) passed all 19 DIEHARD

tests. It is not known how the model will perform with less or more registers. The Self-

Programmable CA [10] suggested using a uniform CA with either 90f or 150f , and

switching to their complementary functions 165f or 105f . Switching between

complementary functions has simpler implementation since the control signal is XOR-ed

directly to 90f or 150f . The control signal is derived from a uniform set of functions (with

non-local neighborhood) over an additional layer of memory registers. Several Self-

Programmable CA (with 36 to 48 registers) are shown to generate n-bit sequences

passing all 19 DIEHARD tests.

By incorporating time-varying CA transformations ()tΦ such that at each clock a

different transformation is used, i.e. (1) () ()()t t tS S+ = Φ , smaller CA can also generate

sequences passing all tests. The improvement comes at a cost – increased complexity is

brought about by using more registers, additional external mechanisms, etc. such that

analysis is obscured. Scalability to smaller or larger models is not easily performed since

the functions used are generally obtained through an exhaustive [10,21] or evolutionary

search [7,8,11].

Besides increased cost and complexity, the above models are difficult to analyze. To

circumvent analysis, the authors in [7,8,11] used evolutionary approaches [18] with the

 9

fitness function defined as the results of some relevant randomness metrics such as

entropy, correlation, DIEHARD, etc. to design a few specific CA models. However, for

CA models to be confidently deployed as PRNG in many applications, rigorous testing

needs to be conducted – this slows down evolutionary approaches tremendously because

of the vast number of fitness evaluations to be performed over many iterations.

Since m-CA have properties that are well studied and tools for analysis have been

developed [3], we now propose the Layered CA model built using m-CA such that

improved randomness quality in generated sequences is achieved by having time-varying

CA transformations ()tΦ at each clock while analysis is still possible and the simple

structure is easily scalable.

III. LAYERED CELLULAR AUTOMATA (L-LCA)

As shown in Fig. 2, an n-bit Layered CA (L-LCA) consists of an n-bit main CA with

additional L layers of n-bit memory to store previous states of the main CA. Since these

previous states require additional registers for storage, such approaches are commonly

referred to as “with memory” [13]. For example, the Self-Programmable CA (SPCA) [10]

mentioned in Section II is also a CA model “with memory” and can be considered the

predecessor to the L-LCA. In the L-LCA, the main CA is chosen to be an m-CA (shown

in Section II) having a hybrid combination of registers using 90f or 150f instead of the

uniform CA with 90f or 150f used in the SPCA. This slight change does not appear to be

 10

significant when the L-LCA is examined at the register level; the implication will become

apparent at the CA level. Each main CA register function can then be switched between

90 165f f↔ or (150 105f f↔) using a control bit ()t
jc (note that all arithmetic is performed

over the binary field (2)GF), i.e. (1) () () ()
1 1

t t t t
j j j js s s c+

− += + + , 0 1j n≤ ≤ − .

Fig. 2. The structure of a 4-bit L-LCA extended from the m-CA in Fig. 1

For the L-LCA, the L layers of memory are simply parallel arrays of registers with each

layer holding a particular previous state
()t i

S
−

, 1, 2,...,i L= of the main CA. At each

clock, the states of a lower layer are shifted up to its next higher layer - the main CA state

is shifted into layer-1 as
(1)t

S
−

 while states
()t L

S
−

 from layer-L are used directly as

control bits, i.e.

() ()
204 : t L t

j jg f s c−≡ → (5)

(1) () ()t t t LS A S S+ −= ⋅ +

()t LS −

(1)tS −

()tS

L layers

of

memory

Main CA

 11

The SPCA used a single layer of memory for storing (1)tS − and the g used to derive the

control bit ()t
jc has the form (1) (1) (1): t t t

j a j b jg s s c− − +
± ±+ → , 0 , 3a b≤ ≤ , a b≠ . This g to derive

the control bit from previous states must be separately determined for each SPCA of

different size thus hindering scalability. The function g is simplified in the L-LCA so that

the search for an optimal form of g is avoided, as well as simplification of both analysis

and wiring complexity of the memory layers. The L-LCA can then be easily scaled by

adding more layers of memory or through the use of a longer main CA based on widely

available maximum length CA [17]. Putting all together, the L-LCA transformation is

given by

(1) () ()t t t L
S A S S

+ −= ⋅ + (6)

At clock t=0,
(0)

S and
() , 1,2,...,l

S l L
− = are initialized. Since (6) is actually a recurrence

equation, the new state
(1)t

S
+

 can always be expressed in a linear combination of

transformations on the initial states
(0)

S and
() , 1,2,...,l

S l L
− = . Denote the transformation

on the initial states
(0)

S and
() , 1,2,...,l

S l L
− = at time t as ()

0
tA and () , 1,2,...,t

lA l L− =

respectively. These transformations on the initial states are actually identical except for a

time shift of one, i.e. (1) ()
0

t t
LA A+

− = and (1) ()
1, 1, 2,..., 1t t

l lA A l L+
− − −= = − . This can be shown

via induction. At 2t L= − , we have

(1) (2) (2)L LS A S S− − −= ⋅ +

(1) (3) (3) (2)()L LS A A S S S− − − −= ⋅ ⋅ + +

 12

(1) (0) () (1) (4) (3) (2)((((()))))L L LS A A A A A S S S S S S− − − + − − −= ⋅ ⋅ ⋅ ⋅ ⋅ + + + + +… …

(1) 1 (0) 2 () 3 (1) (2)...L L L L L LS A S A S A S S− − − − − − + −= ⋅ + ⋅ + ⋅ + + (7)

At 1t L= − , () (1) (1)L LS A S S− −= ⋅ + can be expressed in terms of the initial states by

similar treatment,

() (0) 1 () 2 (1) (1)...L L L L L LS A S A S A S S− − − − + −= ⋅ + ⋅ + ⋅ + + (8)

For t L≥ , the transformation ()
0

tA (and () , 1,2,...,t
lA l L− =) will be of the generalized form

() () () 1 () 0 () *()
0 1 0...t t t t t t t t

t tA c A c A c A C A−
−= ⋅ + ⋅ + + ⋅ = ⋅ where the coefficients

() [0,1]t
tc ∈ ,

() () () ()
1 0[...]t t t t

t tC c c c−= and *() 1 0[...]t t tA A A A−= . The corresponding transformations on

() , 1,2,..., 1t
lA l L− = − can then be similarly expressed as () (1) *(1)t t l L t l L

lA C A+ − − + − −
− = ⋅ .

Theorem 1 Each L-LCA state can be expressed as a linear combination of
(0)

S

and
() , 1,2,...,l

S l L
− = , and we have the following

() ()() () *() (0) (1) *(1) ()

1

L
t t t t l L t l L l

l

S C A S C A S+ − − + − − −

=

= ⋅ ⋅ + ⋅ ⋅∑

(9)

Hereafter, we will illustrate some aspects of 1-LCA while L-LCA with more layers can

be studied by extending the methods directly. In 1-LCA, the states are obtained by

(1) () (1)t t t
S A S S

+ −= ⋅ + , that is the control bits
(1)t

S
−

 from memory layer-1 is XOR-ed with

the newly computed main CA states. To start, we have the two initial states
(0)

S and

 13

(1)
S

−
 to obtain

(1) (0) (1)
S A S S

−= ⋅ + . The first few transformations for 1-LCA are given in

Table II.

Table II. Transformations on initial states

1-LCA (0)
S

(1)
S

−

0t = 1 0

1 A 1

2 2 1A + A

3 3
A 2 1A +

4 4 2 1A A+ + 3
A

5 5
A A+ 4 2 1A A+ +

6 6 4 1A A+ + 5
A A+

7 7
A 6 4 1A A+ +

A. Transformation Sequence of L-LCA

To analyze L-LCA, we propose an approach based on the properties of transformation

matrices A from m-CA. Consider the state sequence generated in a single period by an n-

bit m-CA, we can write using (4) (note that 2 1n

A I
− =)

(1) (2) (2 1){ , , , }
n

S S S −
… 1 2 2 1 (0){ , , , }

n

A A A S−= ⋅… (10)

We then have an ordered sequence of increasing exponents of A multiplied with
(0)

S , an

arbitrary initial state. Each exponent of A appears exactly once in a period. This

transformation sequence 1 2 2 1{ , , , }
n

A A A −
… can be viewed as a fixed process inherent to

the m-CA. Regardless of the initial state
(0)

S used, the m-CA always use this ordered

sequence of transformations to generate the successive states in a single period. In

 14

general, for CA models using a fixed transformation Φ , the corresponding

transformation sequence will be of the form 1 2{ , , , }pΦ Φ Φ… . Since m-CA generates

cyclically equivalent sequences with all possible non-zero initial states [3], we have the

following.

Corollary 1 The transformation sequence 1 2 2 1{ , , , }
n

A A A −
… of an m-CA produces a

cyclically equivalent state sequence (1) (2) (2 1){ , , , }
n

S S S −
… given any non-zero

(0)
S .

Corollary 2 Any non-zero state
()t

S can be given by the multiplication of another non-

zero state
*()t

S with a unique { | 1, 2,..., 2 1}d f n
A A f∈ = − (called a phase difference).

Lemma 1 Matrix addition modulo two over the set { | 1, 2,..., 2 1}f n
A f = − forms a

group. Matrix addition is associative. The element 2 1n

A
− is the identity matrix I and for

each element tA , its inverse is mod(2 1)nt
A

− − . It is well known that the modulo-2

summation of any two cyclic equivalent m-CA sequences results in another shift of the

same sequence, which can be written as
() () ()t t t

A S A S A S
θ α β⋅ = ⋅ + ⋅ . Since each

exponent of A only appears once in a period of the sequence, each relation of the

following form A A Aθ α β= + is closed.

Theorem 2 From (9), the L-LCA transformation at each clock consists of matrix

additions. By Corollary 2 and Lemma 1, these composite transformations can be reduced

 15

to a single () { | 1,2,..., 2 1}t f nA A f∈ = − and (9) is reduced to the following simple form

and a corresponding transformation sequence (see (10)) of the form
()

1{ }t t p
tA =
= can be

obtained.

() () (0)t t
S A S= ⋅ (11)

Next, we proceed by obtaining a Cayley table [16] with the members of

{ | 1, 2,..., 2 1}f n
A f = − . A Cayley table is a table with row and column indices being the

members of a group. The entries of the Cayley table are the results of the group operation

- matrix addition on any two members, and each result is also a member of the group.

The complete set of Cayley relations for the CA in Fig 1 is shown in Table III, where the

row/column indices indicate the exponents of A , and each table entry is the relation

,
f t

f tA A A= + .

Table III Cayley relations (,
f t

f tA A A= +) for primitive polynomial 4 3 1x x+ +

 t=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f=1 - 13 10 5 4 11 9 14 7 3 6 15 2 8 12

2 13 - 14 11 6 5 12 10 15 8 4 7 1 3 9

3 10 14 - 15 12 7 6 13 11 1 9 5 8 2 4

4 5 11 15 - 1 13 8 7 14 12 2 10 6 9 3

5 4 6 12 1 - 2 14 9 8 15 13 3 11 7 10

6 11 5 7 13 2 - 3 15 10 9 1 14 4 12 8

7 9 12 6 8 14 3 - 4 1 11 10 2 15 5 13

8 14 10 13 7 9 15 4 - 5 2 12 11 3 1 6

9 7 15 11 14 8 10 1 5 - 6 3 13 12 4 2

10 3 8 1 12 15 9 11 2 6 - 7 4 14 13 5

11 6 4 9 2 13 1 10 12 3 7 - 8 5 15 14

12 15 7 5 10 3 14 2 11 13 4 8 - 9 6 1

13 2 1 8 6 11 4 15 3 12 14 5 9 - 10 7

14 8 3 2 9 7 12 5 1 4 13 15 6 10 - 11

15 12 9 4 3 10 8 13 6 2 5 14 1 7 11 -

 16

The above suggests that the entire Cayley table has to be computed in order to obtain the

transformation sequence in reduced form ()
1{ }t t p

tA =
= for an L-LCA. However, given a

particular relation a b cA A A+ = and by multiplying it with fA for 1 2 1n
f≤ < − , we can

get the other relations a f b f c fA A A+ + ++ = where the exponents are taken modulo 2 1n − .

We then proceed by first pre-computing relations of the form

= ikiA A A+ (12)

where 2 , 2 1n
ii k≤ ≤ − . All the remaining relations of the form =a b cA A A+ are easily

obtained using 1i a b= − + and 1ic k b= + − . The above pre-computed 1n − relations of

the form = ikiA A A+ , can be re-used for analysis of all L-LCA with different layers of

memory as well as other CA designs using matrix addition over the same set

{ | 1, 2,..., 2 1}f n
A f = − .

B. Period analysis

For convenience, we refer to the L-LCA as an n-bit CA model since only n-bit words will

be sampled at each clock from the main CA states, although the actual number of

registers m contained is m=(L+1)*n registers while an n-bit CA contains exactly n

registers. In configurable generators, the number of registers used is more than the bits

sampled for output because some registers hold the system configuration bits which

determine the actual generator being used. For example, the Programmable CA [3] has

 17

configuration bits held in a ROM and these bits can be fixed for a particular session of

generating outputs. In keystream generators, these configuration bits are considered as

part of the secret key. Hence these registers cannot be sampled for output to prevent from

leaking the secret key. Generally, such generators with m registers (m n>) may generate

cyclically different -bitn sequences with different periods depending on the -bitm initial

state used. Furthermore, some -bitn states may appear more than once during a single

period and/or may appear in more than one sequence. To find the period characteristics

for these state sequences, all possible -bitm initial states may have to be attempted.

The 1-LCA uses m=2n registers for () (1)(,)t tS S − while only -bitn outputs are taken at

each clock as ()tS . We can write (9) as () () () (0)
0 1()t t t d

S A A A S−= + ⋅ ⋅ using Corollary 2,

where dA is the phase difference between the initial state pair (0) (1)(,)S S − .

Theorem 3 All state sequences (1) (2) (){ , ,..., }pS S S generated by the 1-LCA can be

categorized into similar groups based on the phase difference dA between the initial state

pair (0) (1)(,)S S − . Each dA will result in a different type of sequence. Let

() ()
0 1 1{ }t t d t p

tA A A
=

− =+ ⋅ represent the transformation sequence for an arbitrary initial state pair

(0) (1)(,)S S − with (0) (1)dS A S −= ⋅ . There all 2 1n − such initial state pairs *(0) *(1)(,)S S −

having the same phase difference dA , i.e.
*(0) (0)k

S A S= ⋅ and
*(1) (1)k

S A S
− −= ⋅

(1 2 1n
k≤ ≤ −), and their transformation sequences are given by () ()

0 1 1{ }t t d t p k
tA A A A
=

− =+ ⋅ ⋅ .

 18

The resulting state sequences ()() () (0)
0 1 1{ }t t d t p k

tA A A A S
=

− =+ ⋅ ⋅ ⋅ have the same period since

each transformation is multiplied by the same kA .

For example, with the 4-bit 1-LCA whose

1 1 0 0
1 0 1 0
0 1 1 1
0 0 1 0

A

 =

 and substituting
(1) 2 (0)

S A S= ⋅

into (6), we obtained the following transformation sequence with period
415 2 1= − ,

15 13 11 9 7 5 3 1 14 12 10 8 6 4 2 (0){ , , , , , , , , , , , , , , }A A A A A A A A A A A A A A A S⋅ . Notice that the

transformation sequence has all members of
42 2 1{ , ,..., }A A A − appearing exactly once and

is a “permuted” version of the transformation sequence for a 4-bit
90 150/HCA f f thus

indicating a time-varying transformation ()tA is being used at each clock.

Other types of sequences can be generated by using initial state pairs having different

phase differences. However, not all of these sequences will contain all the members of

42 2 1{ , ,..., }A A A − in a single period. For example, if we use
(1) (0)

S S
− = , then the resulting

transformation sequence for the above 1-LCA is

15 12 7 11 2 9 8 8 9 2 11 7 12 15 (0){ , , , , , , , 0, , , , , , , }A A A A A A A A A A A A A A S⋅ .

After determining the phase difference dA that yields the desired sequence type,

appropriate initial state tuples can be used to generate more such sequences. The task of

analyzing all possible state sequences is then made simpler by analyzing only each

representative transformation sequence ()
1{ }t t p

tA
=
= . Being a deterministic generator, 1-LCA

 19

then generates a periodic sequence with period p when the successive transformations

() (1)(,)t tA A −
 and

() (1)(,)t p t pA A+ + −
 are identical.

With Lemma 4.5, the period can then be obtained using direct computation of the

transformations. By Theorem 1, transformation sequence on
(1)

S
−

 lags that of
(0)

S by

one clock. Thus we only need to compute the transformations ()
0

t
A , 1,2,...t = on an

arbitrary
(0)

S . After accounting for the phase difference dA , each transformation in the

overall transformation sequence is then given by

() () (1)
0 0

t t t d
A A A A

−= + ⋅ (13)

IV. EXPERIMENTAL SETUP AND RESULTS

A. DIEHARD Randomness Test Suite

We examined the sequences from L-LCA using the DIEHARD randomness test suite [15]

(detailed descriptions for each of the 19 tests can be found in the given reference). We

start with an n-bit (n=10 to 48) 1-LCA, and more layers are subsequently added, i.e.

L=2,3,4. The m-CA configurations are also tested as ordinary CA for comparison

benchmark. Testing requires a minimum of 10Mbytes of random numbers and is

conducted on two types of sequences obtained from each PRNG tested. At each clock, we

put all n bits from the n-bit main CA into an n-bit sequence, so each CA is executed for

710 *8 / n clocks. Next we examine the randomness quality of single-bit sequences

generated by each register in the main CA. At each clock, the bit from each register is put

into n single-sequences, so each CA is executed for
710 *8 clocks. Each sequence is then

 20

tested and finally the average results over all single-bit sequences are computed. The

above procedure is then repeated for 20 different initial states and the averaged results

plotted in Fig 3-10 - the vertical axis shows the number of DIEHARD tests passed

(maximum score 19) and the horizontal axis shows the length of the main CA.

Based on these results, the performance of L-LCA exceeds that of the conventional m-CA

for PRNG purposes. The results here also include two variants of the L-LCA with

nonlinear functions 30f and 45f [1] (instead of 204f) used to derive the control bit

because these functions are used to examine if the L-LCA structure increases linear

complexity in the next section,

()() () () ()
30 1 1: t L t L t L t

j j j jg f s XOR s OR s c
− − −

− +≡ →
 (14)

()() () () ()
45 1 1: t L t L t L t

j j j jg f s XOR s OR s c− − −
− +≡ →

 (15)

In Fig. 3, the DIEHARD results for single-bit sequences generated by the m-CA are

observed to be very inconsistent – some m-CA with more registers pass very few

DIEHARD tests but a slowly increasing trend is still observed. The results for m-CA with

48 64n< ≤ (not shown due to space constraints) show the same inconsistency - weak

results (passing only 3 tests) are still obtained from some m-CA (51-, 53-, 63-bit). For the

1-LCA with 204f , there are 16 cases that passed all DIEHARD tests. However, there are

several cases failing all tests. Interestingly, these results seem to “track” those for the m-

CA – for the same main CA used if m-CA result is weak, the 1-LCA fails all tests while

if the m-CA result is good, 1-LCA passes all tests. The randomness quality of sequences

 21

generated by the 1-LCA is thus strongly affected by the m-CA configuration used for its

main CA. Unlike the inconsistent results from m-CA and 1-LCA with 204f , the results of

1-LCA with 30f and 45f showed less fluctuation. More tests are passed as more registers

are used, but no sequences passing all DIEHARD tests are found by us. The results based

on 45f are consistently better than 30f .

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

m-CA

1-LCA f204

1-LCA f30

1-LCA f45

Fig. 3. Number of DIEHARD tests (max. 19) passed by single-bit sequences from 10- to

48-bit m-CA and 1-LCA

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

m-CA

1-LCA f204

1-LCA f30

1-LCA f45

Fig. 4. Number of DIEHARD tests (max. 19) passed by n-bit sequences from 10- to 48-

bit m-CA and 1-LCA

 22

In Fig. 4, relative comparison of the DIEHARD results from n-bit sequences generated

by all four methods show similar trends as observed in the DIEHARD results from

single-bit sequences. Compared to the previous DIEHARD results, the results from n-bit

sequences generated by m-CA and 1-LCA with 30f and 45f are visibly weaker. 1-LCA

with 45f still produces better sequences than with 30f . Also, we did not find any m-CA

generating sequences that can pass at least 18 tests. The DIEHARD results from 1-LCA

with 204f are quite similar to the previous test cases – if the single-bit sequences passed

at least 18 tests, the corresponding n-bit sequences are likely to do as well (except the 31-

and 32-bit cases).

In Fig. 5, the 2-LCA 204f with longer than 15-bit main CA generate single-bit sequences

that can pass all DIEHARD tests and for all register lengths, the number of DIEHARD

tests passed is larger than the m-CA. The 2-LCA 30f and 45f results are now very

similar and consistent, more than 16 tests are passed by those with more than 23-bit main

CA; but no sequences are observed to pass all DIEHARD tests.

Fig. 6 shows that n-bit sequences from many 2-LCA with 204f , 30f , 45f can pass at least

18 DIEHARD tests, and all sequences have better performance than m-CA sequences.

For main CA with more than 25 registers, 2-LCA with 204f , 30f , 45f have almost similar

performance.

 23

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

m-CA

2-LCA f204

2-LCA f30

2-LCA f45

Fig. 5. Number of DIEHARD tests (max. 19) passed by single-bit sequences from 10- to

48-bit m-CA and 2-LCA

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

m-CA

2-LCA f204

2-LCA f30

2-LCA f45

Fig. 6. Number of DIEHARD tests (max. 19) passed by n-bit sequences from 10- to 48-

bit m-CA and 2-LCA

In Fig. 7 and 9, all single-bit-sequences from 3-LCA and 4-LCA passed at least 18

DIEHARD tests. The results in Fig. 8 and 10 for n-bit sequences from 3-LCA and 4-LCA

repeat the trends we have seen for 2-LCA. With 16- and 32-bit main CA, 3-LCA and 4-

LCA results are still relatively weak although the results are slightly improved with

 24

increased layers of memory. With main CA of other lengths, the improvement in results

can also be seen by using more layers of memory such that 4-LCA with (small) 10-bit

main CA and 3-LCA with 11-bit main CA can pass 19 DIEHARD tests.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

m-CA

3-LCA f204

3-LCA f30

3-LCA f45

Fig.7. Number of DIEHARD tests (max. 19) passed by single-bit sequences from 10- to

48-bit m-CA and 3-LCA

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

m-CA

3-LCA f204

3-LCA f30

3-LCA f45

Fig. 8. Number of DIEHARD tests (max. 19) passed by n-bit sequences from 10- to 48-

bit m-CA and 3-LCA

 25

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

m-CA

4-LCA f204

4-LCA f30

4-LCA f45

Fig. 9. Number of DIEHARD tests (max. 19) passed by single-bit sequences from 10- to

48-bit m-CA and 4-LCA

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

m-CA

4-LCA f204

4-LCA f30

4-LCA f45

Fig. 10. Number of DIEHARD tests (max. 19) passed by n-bit sequences from 10- to 48-

bit m-CA and 4-LCA

From these results, we can see that for all the different main CA used, adding more layers

of memory will improve the DIEHARD results for the n-bit sequences. With L>1, most

single-bit sequences passed at least 18 tests regardless of the main CA used. Thus, simple

 26

scalability is achieved. At the same time, it is important to check the minimum overall

count of registers used to generate both single-bit and n-bit sequences passing all

DIEHARD tests to arrive at fair implementation cost comparison - 1-LCA requires at

least 28*2 = 56 registers, 2-LCA requires 18*3 = 54 registers, 3-LCA requires 11*4 = 44

registers, 4-LCA requires 10*5 = 50 registers. The m-CA requires 38 registers minimum

for single-bit sequences while no n-bit sequence is observed to pass at least 18

DIEHARD tests.

Comparatively, the Self-Programmable CA is shown to pass all DIEHARD tests with 36

to 48 registers (see Section II.C). This saving in register count is offset by longer

propagation delay through the set of functions g with non-local neighborhood to derive

each control bit, causing layout complications as well as non-scalability of design. In

contrast, the 1-LCA has simplicity and speed advantages because the previous main CA

states are shifted without any processing such that the ()t L
S

− state is used directly as the

control signal (see (6)). Furthermore, the results for L-LCA showed that consistent results

can be obtained from a range of different main CA used while adding more layers of

memory led to improved results. The simplifications made to allow simplified analysis

and scalability for the L-LCA outweighs this minor disadvantage. The L-LCA only used

time-varying transformations ()tΦ to improve randomness quality of generated sequences

– this possibly explained the examined L-LCA require more registers than the SPCA to

pass all DIEHARD tests. The L-LCA can also be studied with a linear function g with

non-local neighborhood to derive the control bit.

 27

B. Linear Complexity

Besides the above statistical tests, it is also important to check the linear complexity of

the sequences generated by the L-LCA. Linear complexity of an arbitrary sequence is

defined as the number of registers required in an equivalent linear system to reproduce

that sequence. The Berlekamp-Massey algorithm [13] is used to measure linear

complexity from the sequences generated. Linear complexity for n-bit sequences from an

n-bit m-CA is simply
2

LC n= , which is why m-CA sequences are usually used with

post-processing to remove inherent linearity.

Linear complexity tests for n-bit sequences are then conducted using smaller 1-LCA and

2-LCA with 5- to 14-bit main CA (ten randomly selected sequences are tested for each

case due to resource limitations). The averaged results are shown in Fig. 5.9 - the vertical

axis shows the linear complexity for the various L-LCA and the horizontal axis shows the

length of the main CA. Since we have only used linear operations in the L-LCA, the

linear complexity is equivalent to the number of registers used,
2 (1)n L× + .

Given that the L-LCA structure has been shown to improve DIEHARD results, we like to

see if linear complexity can also be improved through the L-LCA structure. The well-

known nonlinear functions 30f and 45f are used to replace 204f in (5). The nonlinear

functions 30f and 45f are called simple because they only have three inputs. When used

in normal uniform CA, the linear complexity of sequences generated with 30f and 45f do

not show a substantial increase compared to the purely linear m-CA. When used in 1-

 28

LCA and 2-LCA, the linear complexity increases rapidly with the number of registers

used. It is observed that 1-LCA 45f generated sequences with higher linear complexity

than 1-LCA 30f while for 2-LCA the linear complexity of sequences generated by both

functions are similar. This is very similar to their DIEHARD results.

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

5 6 7 8 9 10 11 12 13 14

1-LCA f30

1-LCA f45

2-LCA f30/f45

Linear complexity 2^q

q = 5

Fig. 11 Linear complexity of 1-LCA and 2-LCA

From the DIEHARD results and linear complexity measured, it is clear that the L-LCA

structure does improve the DIEHARD results substantially when 204f , 30f or 45f is used.

The linear complexity is also increased when 30f or 45f is used.

V. CONCLUSION

In this paper we proposed the Layered CA (L-LCA), consisting of a main CA with

additional L layers of memory for storing previous states of the main CA. The operating

speed for L-LCA is fast as interconnections in the main CA are local and only shifting of

 29

states is associated between each memory layer without any additional processing. These

previous states are used directly to switch the main CA registers’ function while the main

CA is chosen from the widely available configurations of maximum length CA [17]. We

are able to reduce the time-varying transformations used at each clock to an equivalent

transformation sequence that facilitates analysis.

Extensive experiments on L-LCA (L=1,2,3,4) showed improved randomness quality such

that at least 18 DIEHARD tests are passed. As more layers of memory are added or the

main CA’s length is increased, more tests are passed. The 1-LCA and 2-LCA structures

are shown to increase linear complexity when simple non-linear functions 30f and 45f

are used in place of the linear function 204f to select the function for each main CA

register.

Additional memory layers can also be used with other forms of linear finite state

machines such as the linear feedback shift registers (LFSR) [20] which are widely used in

hardware pseudorandom number generators. LFSR have well-known disadvantage of

highly correlated single-bit sequences since each adjacent single-bit sequence is “time-

shifted” by one clock [19]. It will be interesting to be study the randomness quality of

sequences generated by LFSR with additional memory layers.

REFERENCES

[1] S. Wolfram, “Theory and applications of Cellular Automata: Including Selected

Papers 1983-1986”, World Scientific publishing Co., Inc., River Edge, NJ. 1986.

 30

[2] S. Nandi, B. K. Kar, and P. Pal Chaudhuri, “Theory and Applications of Cellular

Automata in Cryptography”, IEEE Transactions on Computers, Vol. 43, pp. 1346-

1357, 1994.

[3] P. Pal Chaudhuri, D. Roy Chowdhury, S. Nandi and S. Chattopadhyay, “Additive

Cellular Automata Theory And Applications”, Volume 1, IEEE Computer Society

Press, Los Alamitos, ISBN 0-8186-7717-1, California, 1997.

[4] P. D. Hortensius, R. D. Mcleod, Werner Pries, D. Michael Miller and H. C. Card,

“Cellular Automata-Based Pseudorandom Number Generators for Built-in Self-

Test”, IEEE Transactions on Computer-Aided Design, Vol. 8, No. 8, pp. 842-859,

1989.

[5] D. E. Knuth, “The Art of Computer Programming, Vol. 2: Seminumerical

Algorithms”, 3rd ed., Reading, Mass.: Addison-Wesley, 1998.

[6] P. Hellekalek, “Good Random Number Generators Are (Not So) Easy to Find”, In

Mathematics and Computer in Simulation, 46, pp. 485-505, 1998.

[7] Sheng-Uei Guan and Shu Zhang, “An Evolutionary Approach to the Design of

Controllable Cellular Automata Structure for Random Number Generation”, IEEE

Transactions on Evolutionary Computation, Vol. 7, No. 1, pp. 23 -36, Feb. 2003.

[8] Sheng-Uei Guan and Shu Zhang, “Incremental Evolution of Cellular Automata

for Random Number Generation”, International Journal of Modern Physics C, Vol.

14, No. 7, pp. 881-896, Sep. 2003

[9] Sheng-Uei Guan, Shu Zhang, and Marie Therese Quieta, "2-d CA Variation with

Asymmetric-Neighborship for Pseudorandom Number Generation", pp. 378-388,

IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems, Vol.

23, No. 3, Mar. 2004.

[10] Sheng-Uei Guan and Syn Kiat Tan, "Pseudorandom Number Generation with Self

Programmable Cellular Automata", IEEE Trans. on Computer Aided Design of

Integrated Circuits and Systems, Vol. 23, No. 7, pp. 1095-1101, July 2004.

[11] M. Tomassini, M. Sipper and M. Perrenoud, “On the Generation of High-Quality

Random Numbers by Two-Dimensional Cellular Automata”, IEEE Transactions

on Computers, 49, pp. 1146-1151, 2000.

[12] M. Tomassini and M. Perrenoud, “Cryptography With Cellular Automata”,

Applied Soft Computing, Vol. 1, pp. 151 – 160, 2001.

[13] R. A. Rueppel, “Analysis and Design of Stream Ciphers”, Springer Verlag, 1986.

 31

[14] M. Mihaljevic and Hideki Imai, “A Family of Fast Keystream Generators based

on Programmable Linear Cellular Automata over GF(q) and Time-variant Table”,

IEICE Trans. Fundamentals, Vol. E82-A, No. 1, pp. 32-39, 1999.

[15] Marsaglia, “Diehard”, http://stat.fsu.edu/~geo/diehard.html, 1998.

[16] Joseph A. Gallian, “Contemporary Abstract Algebra”, Houghton Mifflin

Company, 2002.

[17] Kevin Cattell and Shujian Zhang, “Minimal Cost One-Dimensional Linear Hybrid

Cellular Automata of Degree Through 500”, Journal of Electronic Testing:

Theory and Applications, Kluwer Academic Publishers, Boston, Vol. 6, pp. 255-

258, 1995.

[18] N. Chaiyaratana and A.M.S. Zalzala, “Recent Developments in Evolutionary and

Genetic Algorithms: Theory and Applications”, In Proc. of the Second

International Conference on Genetic Algorithms in Engineering Systems:

Innovations and Applications, pp. 270-277, 1997.

[19] Mrugalski, G., Rajski, J. and Tyszer, J., “Cellular Automata-Based Test Pattern

Generators with Phase Shifters”, IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, Vol 19, Issue 8, pp. 878 - 893, Aug. 2000.

[20] Solomon W. Golomb and Soloman Golomb, “Shift Register Sequences”, Aegean

Park Press, 1981.

[21] B. Shackleford, M. Tanaka, R. Carter, and G. Snider, “High-Performance Cellular

Automata Random Number Generators for Embedded Probabilistic Computing

Systems”, in Proc. NASA/DOD Conference on Evolvable Hardware, pp. 191-200,

2002.

